## MAU34101 Galois theory

# 3 - The Galois group of a polynomial 

Nicolas Mascot mascotn@tcd.ie<br>Module web page

Michaelmas 2021-2022
Version: December 3, 2021


Trinity College Dublin
Coláiste na Tríonóide, Baile Âtha Cliath
The University of Dublin

## The Galois group of a polynomial

## The Galois group of a polynomial

Let $K$ be a field, and $F(x) \in K[x]$ separable of degree $n$ (but possibly reducible).

Then $F(x)$ has $n$ distinct roots $\alpha_{1}, \cdots, \alpha_{n} \in \bar{K}$.
Let $\operatorname{Spl}_{K}(F)=K\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, a splitting field of $F$ over $K$. It is a Galois extension of $K$ : normal because splitting field, separable because $F$ is separable.

## Definition

$$
\operatorname{Gal}_{K}(F)=\operatorname{Gal}^{\left(\operatorname{Spl}_{K}(F) / K\right) .}
$$

## Remark

Conversely, any Galois extension of $K$ is the splitting field of some separable polynomial $\sim$ no loss of generality.

## Reminder: What does $\mathrm{Gal}_{K}(F)$ look like?

Let $\sigma \in \operatorname{Gal}_{K}(F)=\operatorname{Gal}\left(K\left(\alpha_{1}, \cdots, \alpha_{n}\right) / K\right)$.

- $\sigma$ is completely determined by what it does to the generators $\alpha_{1}, \cdots, \alpha_{n}$ of the extension.
- For each $j, \sigma\left(\alpha_{j}\right)$ is again a root of $F$, because $\sigma$ is a $K$-automorphism so preserves rootness in $K[x]$.
$\leadsto \sigma$ induces a permutation of the roots of $F$, and this permutation characterises $\sigma$.
$\sim$ We view $\mathrm{Gal}_{K}(F)$ as a subgroup of $S_{n}$.


## Orbits and transitivity

## Definition (Orbit)

Let $\alpha_{j}$ be a root of $F$. Its orbit under $G=\mathrm{Gal}_{K}(F)$ is

$$
\left\{\sigma\left(\alpha_{j}\right) \mid \sigma \in G\right\} \subseteq\{\text { Roots of } F\} .
$$

The orbits form a partition (disjoint union) of the set of roots of $F$.

## Definition (Transitive)

We say that $G$ is transitive if there is only one orbit.

Equivalently, this means that for all $j, k$, we can find $\sigma \in G$ such that $\sigma\left(\alpha_{j}\right)=\alpha_{k}$.

## Factors $=$ Orbits

## Theorem

Let $O$ be the set of orbits. Then for each orbit $o \in O$, the polynomial $F_{o}(x)=\prod(x-\alpha)$ lies in $K[x]$ and is irreducible. $\alpha \in o$
Therefore, the complete factorisation of $F(x)$ in $K[x]$ is

$$
F(x)=\prod_{o \in O} F_{o}(x)
$$

(assuming $F$ is monic, else we get the rescaled monic version).

## Proof.

Let $\alpha_{j}$ be a root of $F$, and let $o \in O$ be its orbit. By the theorem on Galois extensions, $F_{o}(x)$ is the min poly of $\alpha$ over $K$.

## Factors $=$ Orbits

## Theorem

Let $O$ be the set of orbits. Then for each orbit $o \in O$, the polynomial $F_{o}(x)=\prod(x-\alpha)$ lies in $K[x]$ and is irreducible. $\alpha \in o$
Therefore, the complete factorisation of $F(x)$ in $K[x]$ is

$$
F(x)=\prod_{o \in O} F_{o}(x)
$$

(assuming $F$ is monic, else we get the rescaled monic version).

## Corollary

$F$ is irreducible over $K \Longleftrightarrow \mathrm{Gal}_{K}(F)$ is transitive.

## Factors $=$ Orbits

## Example

Let $K=\mathbb{Q}, F(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)$.
The roots of $F$ are $\pm \sqrt{2}, \pm \sqrt{3}$, so $F$ is separable.
$\mathrm{Spl}_{\mathbb{Q}}(F)=\mathbb{Q}(\sqrt{2},-\sqrt{2}, \sqrt{3},-\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
We saw in the previous chapter that $\# \mathrm{Gal}_{\mathbb{Q}}(F)=4$, with elements $\sigma: \sqrt{2} \mapsto \pm \sqrt{2}, \sqrt{3} \mapsto \pm \sqrt{3}$, but never $\sqrt{2} \mapsto \pm \sqrt{3}$ as they must preserve rootness of $x^{2}-2, x^{2}-3 \in \mathbb{Q}[x]$.
$\leadsto$ Two orbits: $\{\sqrt{2},-\sqrt{2}\}$ and $\{\sqrt{3},-\sqrt{3}\}$.
$\sim$ Two irreducible factors over $\mathbb{Q}$ :
$(x-\sqrt{2})(x+\sqrt{2})=x^{2}-2$ and $(x-\sqrt{3})(x+\sqrt{3})=x^{2}-3$.

## Factors $=$ Orbits

## Example

Keep the same $F$, but view it as an element of $K[x]$ where $K=\mathbb{Q}(\sqrt{2})$.

Then $\operatorname{Gal}_{K}(F)=\operatorname{Gal}(K(\sqrt{3}) / K) \simeq \mathbb{Z} / 2 \mathbb{Z}$ flips the sign of $\sqrt{3}$ but can no longer touch $\sqrt{2}$
$\sim 3$ orbits: $\{\sqrt{2}\},\{-\sqrt{2}\}$, and $\{\sqrt{3},-\sqrt{3}\}$
$\sim 3$ irreducible factors over $K: x-\sqrt{2}, x+\sqrt{2}$, and $x^{2}-3$.

## Reminders on permutations

## The example we will use in this section

Fix $n \in \mathbb{N}$.
We are going to review a few concepts about permutations, i.e. elements of $S_{n}$.

In this section, for examples, we will take $n=6$ and $\tau \in S_{6}$ the permutation

$$
1 \mapsto 4,2 \mapsto 6,3 \mapsto 3,4 \mapsto 5,5 \mapsto 1,6 \mapsto 2 .
$$

## Cycles

## Definition (Cycle)

Let $k \leqslant n$. A $\underline{k-c y c l e}$ is a permutation $c \in S_{n}$ of the form

$$
x_{1} \mapsto x_{2} \mapsto \cdots \mapsto x_{k} \mapsto x_{1}
$$

for some distinct $x_{1}, \cdots, x_{k} \in\{1,2, \cdots, n\}$ called the support of $c$, and such that $c$ fixes all the other points of $\{1, \cdots, n\}$. Notation: $c=\left(x_{1}, x_{2}, \cdots, x_{k}\right)$.

## Theorem

Any permutation can be decomposed as a product of cycles with pairwise disjoint supports.

## Proof.

Look at the orbits of the permutation.
(Image: we have a box of elastic bands, and we are pulling the bands out of the box, one at a time.)

## Order

## Proposition

Let $\sigma \in S_{n}$ have cycle decomposition $k_{1}+k_{2}+\cdots$, meaning a $k_{1}$-cycle, a $k_{2}$-cycle, $\cdots$. Then $\sigma$ has order $\operatorname{Icm}\left(k_{1}, k_{2}, \cdots\right)$.

## Proof.

The order of a $k$-cycle is $k$.
Besides, cycles with disjoint supports commute.

## Example

We have seen that the cycle decomposition of $\tau$ is $2+3$ (or $2+3+1$ if you prefer), so the order of $\tau$ is $\operatorname{lcm}(2,3)(\operatorname{or} \operatorname{lcm}(2,3,1))=6$.

## Signature

## Theorem

There is a sign morphism $\varepsilon: S_{n} \longrightarrow\{ \pm 1\}$ characterised by

$$
\varepsilon(k-\text { cycle })=(-1)^{k+1}
$$

Mnemonic: It would have been easier if $\varepsilon(k$-cycle $)=(-1)^{k}$; but 1 -cycles are the identity so they must have sign +1 .

Example

$$
\varepsilon(\tau)=\varepsilon((1,4,5)(2,6))=\varepsilon((1,4,5)) \varepsilon((2,6))=+1 \times-1=-1 .
$$

Permutations with $\varepsilon=+1$ are called even, and those with $\varepsilon=-1$ are called odd.
Note that a $k$-cycle is even when $k$ is odd, and vice-versa.

## The alternating group $A_{n}$

## Definition (Alternating group)

The alternating group is $A_{n}=\operatorname{Ker} \varepsilon \leqslant S_{n}$.

In other words, it is the subset of even permutations.
Actually, $A_{n}$ is normal in $S_{n}$ since it is a kernel.

## Remark

As soon as $n \geqslant 2, \varepsilon$ is surjective, so $\# A_{n}=\frac{1}{2} \# S_{n}=\frac{n!}{2}$.

## Theorem

If $n \geqslant 5$, then $A_{n}$ is a simple group (has no nontrivial normal subgroups).

## When is $\operatorname{Gal}_{K}(F) \leqslant A_{n}$ ?

## The discriminant returns

Let again $F(x) \in K[x]$ separable.

## Theorem

$$
\operatorname{Gal}_{K}(F) \leqslant A_{n} \Longleftrightarrow \operatorname{disc} F \text { is a square in } K .
$$

See notes for the proof.

## Remark

 disc $F \neq 0$ since $F$ is separable.
## Example

Let $F(x)=x^{3}-6 x-2 \in \mathbb{Q}[x]$.
Then disc $F=-4(-6)^{3}-27(-2)^{2}=756=2^{2} 3^{3} 7^{1}$ is not zero so $F$ is separable, but is not a square so $\mathrm{Gal}_{\mathbb{Q}}(F) \notin A_{3}$. Besides $F$ is irreducible over $\mathbb{Q}$ (Eisenstein) so $\mathrm{Gal}_{\mathbb{Q}}(F)$ is transitive. The classification of the subgroups of $S_{3}$ shows that $\mathrm{Gal}_{\mathbb{Q}}(F)=S_{3}$.

## The discriminant returns

Let again $F(x) \in K[x]$ separable.
Theorem

$$
\operatorname{Gal}_{K}(F) \leqslant A_{n} \Longleftrightarrow \operatorname{disc} F \text { is a square in } K .
$$

See notes for the proof.

## Remark

$\operatorname{disc} F \neq 0$ since $F$ is separable.

## Example

Let again $F(x)=x^{3}-6 x-2$ but seen in $\mathbb{R}[x]$ this time. Then still disc $F=756 \neq 0$, but this time $\operatorname{disc} F$ is a square in $\mathbb{R}$, so $\mathrm{Gal}_{\mathbb{R}}(F) \leqslant A_{3}$.
(In fact, all 3 roots of $F$ are real, so $\operatorname{Spl}_{\mathbb{R}}(F)=\mathbb{R}$ itself, so actually $\operatorname{Gal}_{\mathbb{R}}(F)=\{\mathrm{Id}\}$.)

## Dedekind's theorem

## Dedekind's theorem

## Theorem

Let $F(x) \in \mathbb{Z}[x]$ monic and separable, and let $p \in \mathbb{N}$ prime.
Suppose the factorisation $F(x)=\prod_{j} F_{j}(x)$ of $F(x)$ in $(\mathbb{Z} / p \mathbb{Z})[x]$ involves no repeated factors. Then $\mathrm{Gal}_{\mathbb{Q}}(F)$ contains an element whose cycle decomposition is

$$
\left(\operatorname{deg} F_{1}\right)+\left(\operatorname{deg} F_{2}\right)+\cdots .
$$

See notes for the proof.

## Remark

Since $\mathbb{Z} / p \mathbb{Z}$ is perfect, $F \bmod p$ has repeated factors iff. $\operatorname{disc}(F \bmod p)=0$.
But disc $F$ is essentially defined as a determinant in the coefs of $F$ and $F^{\prime}$, so $\operatorname{disc}(F \bmod p)=\operatorname{disc}(F) \bmod p$, so $F$ has repeated factors $\bmod p$ iff. $p \mid \operatorname{disc} F$.
As disc $F \neq 0$, this only happens for finitely many $p$.

## Dedekind's theorem

## Theorem

Let $F(x) \in \mathbb{Z}[x]$ monic and separable, and let $p \in \mathbb{N}$ prime.
Suppose the factorisation $F(x)=\prod_{j} F_{j}(x)$ of $F(x)$ in $(\mathbb{Z} / p \mathbb{Z})[x]$ involves no repeated factors. Then $\mathrm{Gal}_{\mathbb{Q}}(F)$ contains an element whose cycle decomposition is

$$
\left(\operatorname{deg} F_{1}\right)+\left(\operatorname{deg} F_{2}\right)+\cdots .
$$

See notes for the proof.

## Remark

We can try various primes $p$ with the same $F$.
Cebotarev's densitity theorem states that when we do so, we hit elements of $\mathrm{Gal}_{\mathbb{Q}}(F)$ in a uniform way.

## Practical factoring $\bmod p$

To apply Dedekind, we need to be able to factor in $\mathbb{Z} / p \mathbb{Z}[x]$.

## Theorem

Let $G(x) \in \mathbb{Z} / p \mathbb{Z}[x]$.

- $G$ has repeated factors iff. $\operatorname{gcd}\left(G, G^{\prime}\right) \neq 1$.
- $G$ has factor(s) of deg 1 iff. $G$ has roots.
- More generally, for each $d \in \mathbb{N}, G$ has factors of degree $\mid d$ iff. $\operatorname{gcd}\left(G, x^{p^{d}}-x\right) \neq 1$.


## Proof.

The point is that $x^{p^{d}}-x$ is the product of all monic irreducible polynomials of degree $\mid d$ in $\mathbb{Z} / p \mathbb{Z}$, so taking the gcd filters the factors of $G$ of degree $\mid d$. See notes for details.

## Practical factoring $\bmod p$

## Example

Let $F(x)=x^{5}-x-1$. We find $\operatorname{disc} F=2869=19 \times 151$, so we can use any $p \notin\{19,151\}$.
Let us factor $F \bmod p=2.2 \nmid 2869$, so no repeated factors. The possible roots at 0 and 1 , but none is a root, so no factor of degree 1. By Euclid, we find $\operatorname{gcd}\left(F, x^{4}-x\right)=x^{2}+x+1$, so we have found the irreducible factor $x^{2}+x+1$ of $F$, and $F$ has no more factors of degree $\mid 2$.
So $F \bmod 2$ factors as $2+3$; by Dedekind, $\mathrm{Gal}_{\mathbb{Q}}(F) \leqslant S_{5}$ contains an element of the form $(*, *)(*, *, *)$.
Let us now try $p=3$. Again $3 \nmid 2869$ so no repeated factors. The possible roots are $0,1,2$, but none of them is a root. Besides, we find $\operatorname{gcd}\left(F, x^{9}-x\right)=1$, so $F \bmod 3$ actually has no factors of degree $\mid 2$. Therefore $F \bmod 3$ is irreducible, so $\mathrm{Gal}_{\mathbb{Q}}(F)$ contains a 5 -cycle by Dedekind.

## Proving that the Galois group is $S_{n}$

## Proposition

Let $G \leqslant S_{n}$ be transitive. If $G$ contains a 2 -cycle and an ( $n-1$ )-cycle, then $G=S_{n}$.

## Proof.

WLOG (relabel), the $n-1$-cycle is $c=(1,2, \cdots, n-1) \in G$. Let $t=(i, j) \in G$ be the 2-cycle.

Since $G$ is transitive, there exists $g \in G$ such that $g(j)=n$; then $G \ni g \operatorname{tg}^{-1}=(g(i), g(j))$, so WLOG $j=n$.

Then for all $x \in \mathbb{Z}, G \ni c^{x} t c^{-x}=\left(c^{x}(i), c^{x}(n)\right)=\left(c^{x}(i), n\right)$, so $G \ni(k, n)$ for all $k<n$.

But then $G \ni(u, n)(v, n)(u, n)=(u, v)$ for all $u, v$, and those generate $S_{n}$.

## Proving that the Galois group is $S_{n}$

## Example

Let again $F(x)=x^{5}-x-1 \in \mathbb{Q}[x]$, and $G=\operatorname{Gal}_{\mathbb{Q}}(F) \leqslant S_{5}$.
By Gauss, any factorisation of $F$ over $\mathbb{Q}$ would actually happen over $\mathbb{Z}$, and thus survive mod 3 ; but we have seen that $F \bmod 3$ is irreducible, so $F$ is irreducible over $\mathbb{Q}$; therefore $G$ is transitive.
The factorisation of $F$ mod 2 shows $G \ni g_{2}=(*, *)(*, *, *)$; in particular $G \ni g_{2}^{3}=(*, *)$, so $\operatorname{WLOG}(1,2) \in G$.
Besides, the factorisation of $F$ mod 3 shows that $G$ contains a 5 -cycle $c$ (which reproves transitivity).

Replacing $c$ with one of its powers, we may assume that $c(1)=2$, so WLOG $c=(1,2,3,4,5)$ (relabel the other roots if necessary). Then $G \ni c t=(1,3,4,5)$. The proposition then shows that $G=S_{5}$.

