MAU34101 Galois theory

3 - The Galois group of a polynomial

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2021–2022 Version: December 3, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

The Galois group of a polynomial

The Galois group of a polynomial

Let K be a field, and $F(x) \in K[x]$ separable of degree n (but possibly reducible).

Then F(x) has n distinct roots $\alpha_1, \cdots, \alpha_n \in \overline{K}$.

Let $\text{Spl}_{K}(F) = K(\alpha_{1}, \dots, \alpha_{n})$, a splitting field of F over K. It is a Galois extension of K: normal because splitting field, separable because F is separable.

Definition

$$\operatorname{Gal}_{K}(F) = \operatorname{Gal}(\operatorname{Spl}_{K}(F)/K).$$

Remark

Conversely, any Galois extension of K is the splitting field of some separable polynomial \rightsquigarrow no loss of generality.

Reminder: What does $Gal_{\mathcal{K}}(F)$ look like?

Let
$$\sigma \in \operatorname{Gal}_{\kappa}(F) = \operatorname{Gal}(\kappa(\alpha_1, \cdots, \alpha_n)/\kappa).$$

- σ is completely determined by what it does to the generators α₁, · · · , α_n of the extension.
- For each j, $\sigma(\alpha_j)$ is again a root of F, because σ is a K-automorphism so preserves rootness in K[x].

 $\rightsquigarrow \sigma$ induces a <u>permutation</u> of the roots of *F*, and this permutation characterises σ .

 \rightsquigarrow We view Gal_K(F) as a subgroup of S_n .

Definition (Orbit)

Let α_j be a root of F. Its <u>orbit</u> under $G = \text{Gal}_{\kappa}(F)$ is $\{\sigma(\alpha_j) \mid \sigma \in G\} \subseteq \{\text{Roots of } F\}.$

The orbits form a <u>partition</u> (disjoint union) of the set of roots of F.

Definition (Transitive)

We say that G is transitive if there is only one orbit.

Equivalently, this means that for all j, k, we can find $\sigma \in G$ such that $\sigma(\alpha_j) = \alpha_k$.

$\mathsf{Factors} = \mathsf{Orbits}$

Theorem

Let O be the set of orbits. Then for each orbit $o \in O$, the polynomial $F_o(x) = \prod_{\alpha \in o} (x - \alpha)$ lies in K[x] and is irreducible. Therefore, the complete factorisation of F(x) in K[x] is

$$F(x) = \prod_{o \in O} F_o(x)$$

(assuming F is monic, else we get the rescaled monic version).

Proof.

Let α_j be a root of F, and let $o \in O$ be its orbit. By the theorem on Galois extensions, $F_o(x)$ is the min poly of α over K.

$\mathsf{Factors} = \mathsf{Orbits}$

Theorem

Let O be the set of orbits. Then for each orbit $o \in O$, the polynomial $F_o(x) = \prod_{\alpha \in o} (x - \alpha)$ lies in K[x] and is irreducible. Therefore, the complete factorisation of F(x) in K[x] is

$$F(x) = \prod_{o \in O} F_o(x)$$

(assuming F is monic, else we get the rescaled monic version).

Corollary

F is irreducible over $K \iff \operatorname{Gal}_{K}(F)$ is transitive.

$\mathsf{Factors} = \mathsf{Orbits}$

Example

Let
$$K = \mathbb{Q}$$
, $F(x) = (x^2 - 2)(x^2 - 3)$.
The roots of F are $\pm \sqrt{2}$, $\pm \sqrt{3}$, so F is separable.

- $\operatorname{Spl}_{\mathbb{Q}}(F) = \mathbb{Q}(\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ We saw in the previous chapter that $\#\operatorname{Gal}_{\mathbb{Q}}(F) = 4$, with elements $\sigma : \sqrt{2} \mapsto \pm \sqrt{2}, \sqrt{3} \mapsto \pm \sqrt{3}$, but never $\sqrt{2} \mapsto \pm \sqrt{3}$ as they must preserve rootness of $x^2 - 2, x^2 - 3 \in \mathbb{Q}[x]$.
- \rightsquigarrow Two orbits: $\{\sqrt{2},-\sqrt{2}\}$ and $\{\sqrt{3},-\sqrt{3}\}.$

 \sim Two irreducible factors over \mathbb{Q} : $(x - \sqrt{2})(x + \sqrt{2}) = x^2 - 2$ and $(x - \sqrt{3})(x + \sqrt{3}) = x^2 - 3$.

Example

Keep the same F, but view it as an element of K[x] where $K = \mathbb{Q}(\sqrt{2})$.

Then $Gal_{K}(F) = Gal(K(\sqrt{3})/K) \simeq \mathbb{Z}/2\mathbb{Z}$ flips the sign of $\sqrt{3}$ but can no longer touch $\sqrt{2}$

$$\sim$$
 3 orbits: $\{\sqrt{2}\},~\{-\sqrt{2}\},$ and $\{\sqrt{3},-\sqrt{3}\}$

 \sim 3 irreducible factors over K: $x - \sqrt{2}$, $x + \sqrt{2}$, and $x^2 - 3$.

Reminders on permutations

Fix $n \in \mathbb{N}$.

We are going to review a few concepts about permutations, i.e. elements of S_n .

In this section, for examples, we will take n=6 and $\tau\in S_6$ the permutation

 $1 \mapsto 4, \ 2 \mapsto 6, \ 3 \mapsto 3, \ 4 \mapsto 5, \ 5 \mapsto 1, \ 6 \mapsto 2.$

Cycles

Definition (Cycle)

Let $k \leq n$. A <u>k-cycle</u> is a permutation $c \in S_n$ of the form $x_1 \mapsto x_2 \mapsto \cdots \mapsto x_k \mapsto x_1$ for some distinct $x_1, \cdots, x_k \in \{1, 2, \cdots, n\}$ called the <u>support</u> of c, and such that c fixes all the other points of $\{1, \cdots, n\}$. Notation: $c = (x_1, x_2, \cdots, x_k)$.

Theorem

Any permutation can be decomposed as a product of cycles with pairwise disjoint supports.

Proof.

Look at the orbits of the permutation. (Image: we have a box of elastic bands, and we are pulling the bands out of the box, one at a time.) $\hfill \Box$

Order

Proposition

Let $\sigma \in S_n$ have cycle decomposition $k_1 + k_2 + \cdots$, meaning a k_1 -cycle, a k_2 -cycle, \cdots . Then σ has order $lcm(k_1, k_2, \cdots)$.

Proof.

The order of a k-cycle is k. Besides, cycles with disjoint supports commute.

Example

We have seen that the cycle decomposition of τ is 2 + 3 (or 2 + 3 + 1 if you prefer), so the order of τ is lcm(2,3) (or lcm(2,3,1)) = 6.

Theorem

There is a sign morphism
$$\varepsilon : S_n \longrightarrow \{\pm 1\}$$
 characterised by
 $\varepsilon(k$ -cycle) = $(-1)^{k+1}$.

Mnemonic: It would have been easier if $\varepsilon(k$ -cycle) = $(-1)^k$; but 1-cycles are the identity so they must have sign +1.

Example

$$\varepsilon(\tau) = \varepsilon((1,4,5)(2,6)) = \varepsilon((1,4,5))\varepsilon((2,6)) = +1 \times -1 = -1.$$

Permutations with $\varepsilon = +1$ are called even, and those with $\varepsilon = -1$ are called odd.

Note that a k-cycle is even when k is odd, and vice-versa. \bigcirc

The alternating group A_n

Definition (Alternating group)

The <u>alternating group</u> is $A_n = \text{Ker } \varepsilon \leq S_n$.

In other words, it is the subset of even permutations. Actually, A_n is normal in S_n since it is a kernel.

Remark

As soon as $n \ge 2$, ε is surjective, so $\#A_n = \frac{1}{2} \#S_n = \frac{n!}{2}$.

Theorem

If $n \ge 5$, then A_n is a simple group (has no nontrivial normal subgroups).

When is $\operatorname{Gal}_{K}(F) \leq A_{n}$?

The discriminant returns

Let again
$$F(x) \in K[x]$$
 separable.

Theorem

$$\operatorname{Gal}_{K}(F) \leqslant A_{n} \iff \operatorname{disc} F$$
 is a square in K.

See notes for the proof.

Remark

disc $F \neq 0$ since F is separable.

Example

Let $F(x) = x^3 - 6x - 2 \in \mathbb{Q}[x]$. Then disc $F = -4(-6)^3 - 27(-2)^2 = 756 = 2^2 3^3 7^1$ is not zero so F is separable, but is not a square so $\operatorname{Gal}_{\mathbb{Q}}(F) \not\leq A_3$. Besides F is irreducible over \mathbb{Q} (Eisenstein) so $\operatorname{Gal}_{\mathbb{Q}}(F)$ is transitive. The classification of the subgroups of S_3 shows that $\operatorname{Gal}_{\mathbb{Q}}(F) = S_3$.

The discriminant returns

Let again $F(x) \in K[x]$ separable.

Theorem

$$\operatorname{Gal}_{K}(F) \leqslant A_{n} \iff \operatorname{disc} F$$
 is a square in K.

See notes for the proof.

Remark

disc $F \neq 0$ since F is separable.

Example

Let again $F(x) = x^3 - 6x - 2$ but seen in $\mathbb{R}[x]$ this time. Then still disc $F = 756 \neq 0$, but this time disc F is a square in \mathbb{R} , so $\operatorname{Gal}_{\mathbb{R}}(F) \leq A_3$. (In fact, all 3 roots of F are real, so $\operatorname{Spl}_{\mathbb{R}}(F) = \mathbb{R}$ itself, so actually $\operatorname{Gal}_{\mathbb{R}}(F) = \{\operatorname{Id}\}$.)

Dedekind's theorem

Dedekind's theorem

Theorem

Let $F(x) \in \mathbb{Z}[x]$ monic and separable, and let $p \in \mathbb{N}$ prime. Suppose the factorisation $F(x) = \prod_j F_j(x)$ of F(x)in $(\mathbb{Z}/p\mathbb{Z})[x]$ involves no repeated factors. Then $\operatorname{Gal}_{\mathbb{Q}}(F)$ contains an element whose cycle decomposition is $(\deg F_1) + (\deg F_2) + \cdots$.

See notes for the proof.

Remark

Since $\mathbb{Z}/p\mathbb{Z}$ is perfect, $F \mod p$ has repeated factors iff. disc $(F \mod p) = 0$. But disc F is essentially defined as a determinant in the coefs of F and F', so disc $(F \mod p) = \text{disc}(F) \mod p$, so F has repeated factors mod p iff. $p \mid \text{disc } F$. As disc $F \neq 0$, this only happens for finitely many p.

Dedekind's theorem

Theorem

Let $F(x) \in \mathbb{Z}[x]$ monic and separable, and let $p \in \mathbb{N}$ prime. Suppose the factorisation $F(x) = \prod_j F_j(x)$ of F(x)in $(\mathbb{Z}/p\mathbb{Z})[x]$ involves no repeated factors. Then $\operatorname{Gal}_{\mathbb{Q}}(F)$ contains an element whose cycle decomposition is

 $(\deg F_1) + (\deg F_2) + \cdots$

See notes for the proof.

Remark

We can try various primes p with the same F. <u>Cebotarev's densitity theorem</u> states that when we do so, we hit elements of $Gal_{\mathbb{Q}}(F)$ in a uniform way.

Practical factoring mod p

To apply Dedekind, we need to be able to factor in $\mathbb{Z}/p\mathbb{Z}[x]$.

Theorem

Let $G(x) \in \mathbb{Z}/p\mathbb{Z}[x]$.

- G has repeated factors iff. $gcd(G, G') \neq 1$.
- G has factor(s) of deg 1 iff. G has roots.
- More generally, for each d ∈ N, G has factors of degree | d iff. gcd(G, x^{p^d} − x) ≠ 1.

Proof.

The point is that $x^{p^d} - x$ is the product of all monic irreducible polynomials of degree $| d \text{ in } \mathbb{Z}/p\mathbb{Z}$, so taking the gcd <u>filters</u> the factors of *G* of degree | d. See notes for details.

Practical factoring mod p

Example

Let $F(x) = x^5 - x - 1$. We find disc $F = 2869 = 19 \times 151$, so we can use any $p \notin \{19, 151\}$.

Let us factor $F \mod p = 2$. $2 \nmid 2869$, so no repeated factors. The possible roots at 0 and 1, but none is a root, so no factor of degree 1. By Euclid, we find $gcd(F, x^4 - x) = x^2 + x + 1$, so we have found the irreducible factor $x^2 + x + 1$ of F, and F has no more factors of degree | 2.

So $F \mod 2$ factors as 2 + 3; by Dedekind, $Gal_{\mathbb{Q}}(F) \leq S_5$ contains an element of the form (*, *)(*, *, *).

Let us now try p = 3. Again $3 \nmid 2869$ so no repeated factors. The possible roots are 0, 1, 2, but none of them is a root. Besides, we find $gcd(F, x^9 - x) = 1$, so $F \mod 3$ actually has no factors of degree | 2. Therefore $F \mod 3$ is irreducible, so $Gal_{\mathbb{Q}}(F)$ contains a 5-cycle by Dedekind.

Proving that the Galois group is S_n

Proposition

Let $G \leq S_n$ be <u>transitive</u>. If G contains a 2-cycle and an (n-1)-cycle, then $G = S_n$.

Proof.

WLOG (relabel), the n-1-cycle is $c = (1, 2, \dots, n-1) \in G$. Let $t = (i, j) \in G$ be the 2-cycle.

Since G is transitive, there exists $g \in G$ such that g(j) = n; then $G \ni gtg^{-1} = (g(i), g(j))$, so WLOG j = n.

Then for all $x \in \mathbb{Z}$, $G \ni c^{x}tc^{-x} = (c^{x}(i), c^{x}(n)) = (c^{x}(i), n)$, so $G \ni (k, n)$ for all k < n.

But then $G \ni (u, n)(v, n)(u, n) = (u, v)$ for all u, v, and those generate S_n .

Proving that the Galois group is S_n

Example

Let again $F(x) = x^5 - x - 1 \in \mathbb{Q}[x]$, and $G = \operatorname{Gal}_{\mathbb{Q}}(F) \leqslant S_5$.

By Gauss, any factorisation of F over \mathbb{Q} would actually happen over \mathbb{Z} , and thus survive mod 3; but we have seen that F mod 3 is irreducible, so F is irreducible over \mathbb{Q} ; therefore Gis transitive.

The factorisation of $F \mod 2$ shows $G \ni g_2 = (*, *)(*, *, *)$; in particular $G \ni g_2^3 = (*, *)$, so WLOG $(1, 2) \in G$.

Besides, the factorisation of $F \mod 3$ shows that G contains a 5-cycle c (which reproves transitivity).

Replacing c with one of its powers, we may assume that c(1) = 2, so WLOG c = (1, 2, 3, 4, 5) (relabel the other roots if necessary). Then $G \ni ct = (1, 3, 4, 5)$. The proposition then shows that $G = S_5$.